

Correction to "Dendrimer Encapsulated Copper Cluster as a Chemoselective and Regenerable Hydrogenation Catalyst"

Prasenjit Maity, Seiji Yamazoe, and Tatsuya Tsukuda*

ACS Catalysis 2013, 3, 182-185

On page 182, ref 9 (Vilar-Vidal, N.; Rivas, J.; López-Quintela, M. A. ACS Catal. 2012, 2, 1693) was cited improperly in the following two sentences:

- For example, Cu nanoparticles (NPs) stabilized by organic polymers or immobilized on solid supports are easily oxidized into CuO or Cu₂O NPs under ambient conditions³⁻⁶ with a few exceptions where they are transformed into Cu²⁺ ions.⁷⁻⁹
- Indeed, Cu NPs (>10 nm) have been used as catalysts for reduction of a dye by hydrazine⁹ and aromatic nitro compounds¹⁴ and azides¹⁵ by ammonium formate, hydrogenation of nitrophenol¹⁶ and CO_{29}^{17-19} and in the water-gas shift reaction.²⁰

Those two sentences should be corrected, respectively, as follows.

- For example, Cu nanoparticles (NPs) stabilized by organic polymers or immobilized on solid supports are easily oxidized into Cu_xO (x = 1, 2) NPs³⁻⁶ or Cu^{2+} ions^{7,8} under ambient conditions, with the exception of where Cu_n (n = 5, 13, 20) clusters stabilized by tetrabutylammonium nitrate are stable against oxidation.⁹
- Indeed, Cu NPs have been used as catalysts for reduction of aromatic nitro compounds¹⁴ and azides¹⁵ by ammonium formate, hydrogenation of nitrophenol¹⁶ and CO₂¹⁷⁻¹⁹ and in the water-gas shift reaction.²⁰

We appreciate Dr. Vilar-Vidal's pointing out the erroneous citations.

AUTHOR INFORMATION

Notes

The authors declare no competing financial interest.

